Saturday, September 27, 2014

Cerita dan Pengalaman Misteri 4.5 Tahun main di Kontrakan Kertosentono 119.


Cerita dan Pengalaman Misteri 4.5 Tahun main di Kontrakan Kertosentono 119.

Namaku imam, aku mahasiswa elektro UB angkatan 2010.
Aku anak malang tapi aku sering sekali maen ke kosnya temenku yang ada di jl. kertosentono no.119. Setiap habis kuliah aku langsung menuju kos itu. Kadang sampe malam. Dan tidak jarang aku menginap disitu klo besok paginya ada kuliah. 
Kontrakan itu (bisa juga dibilang kos2an karena sewanya tiap kamar tapi bayarnya tahunan) bisa dikatakan himpunan kedua setelah himpunan asli anak elektro sendiri yg ada di kampus. Kenapa ?? karena 5 dari 6 penghuni kontrakan itu adalah mahasiswa elektro. 4 penghuninya adalah teman seangkatanku (Dheo, Iqbal, Bas dan Afnan), 1 anak elektro angkatan 2007 (Mas Tomi) yang masih berjuang untuk lulus, dan 1 kamar yang penghuninya tidak tetap.

Selain aku juga banyak anak elektro yang sering maen kesitu. Baik untuk tujuan mengerjakan tugas atau sekadar nongkrong dan maen PES disitu. Hampir setiap hari kontrakan itu rame dengan anak2 elektro. Dari siang hingga malam. Bahkan sangking ramenya sampai pernah ditegur sama Pak RT setempat.

Okee,, itu tadi keramaian dan hiruk pikuk di kontrakan kertosentono 119.

Sekarang langsung saja pada cerita mistis di kontrakan itu.

Cerita ini terjadi pada bulan Maret 2014. Aku lupa tanggalnya, tapi hari itu adalah hari kamis tepatnya pas malam jumat. Diluar keramaian tadi kontrakan kertosentono 119 tidak luput juga dari kesepian dan keheningan jika anak2 elektro semua sudah pulang atau pada saat liburan panjang.

Saat itu selesai nongkrong dan bercengkeramah di depan kontrakan seperti biasa, sekitar jam 12an semua pada bubar. Ada yang pulang ke rumah karena anak malang, ada yg balik ke kosnya. Tapi pada saat itu aku dan satu temanku yg namanya Maman memutuskan untuk menginap disitu. Entah karena kecapekan atau apa temanku ini langsung tidur pulas di kamar Dheo. Sedangkan aku tidur di ruang tamu. Sedangkan semua penghuni kontrakan itu sudah berada dikamarnya masing2. Alhasil aku sendirian di ruang tamu. Semua lampu di kontrakan itu dimatikan.

Aku mencoba untuk bisa cepat tidur agar besok bisa bangun pagi dan masuk kuliah. Tetapi lagi2 aku tidak bisa tidur, insomnia. Akhirnya aku nyalakan TV dengan kondisi lampu tetap mati dgn harapan bisa cepat ngantuk dan tidur. Tetapi tetap saja aku tidak ngantuk. Aku coba cari2 channel yg acaranya bagus. Karena tidak ada acara yg bagus akhirnya aku matikan saja. Dan aku mencoba untuk pejamkan mata. Saat keadaan hening tiba2 aku mendengar ada benda jatuh di dapur. Tapi aku positif thinking saja. Mgkin tikus yg menjatuhkan benda di dapur. Aku hiraukan saja. Keadaan hening lagi. Tapi hanya beberapa menit. Lagi2 terdengar benda jatuh dari arah dapur, sepertinya gelas. Tapi tidak ada suara pecahnya. Anehh..!!.

Aku mencoba melihat ke arah dapur. Keadaan memang gelap sehingga tidak terlihat jelas, tapi aku bisa memastikan kalau tidak ada orang disana. Akhirnya aku beranikan diri untuk mengecek apa ada benda jatuh. Aku bangun dan menuju ke dapur dengan perlahan. Aku nyalakan lampu dapur, tapi aku tidak melihat ada benda jatuh di sekitar situ. Disamping dapur ada kamar mandi. Lampu kamar mandi mati dan pintu kamar mandi tertutup. Karena masih penasaran aku ingin mengecek di dalam kamar mandi. Dengan perasaan ingin tahu bercampur takut  aku coba dekati pintu kamar mandi dengan perlahan. Aku tidak bisa menyalakan lampu kamar mandi karena saklarnya ada di dalam. Aku coba terus mendekat ke arah kamar mandi. Dan sampailah aku di depan pintu kamar mandi. Aku masih ragu untuk membuka pintu karena keadaan di dalamnya sangat gelap. Aku berencana untuk membuka pintunya sedikit dan menyalakan lampunya. Akhirnya aku memberanikan diri untuk mencoba membuka pintu itu. Setelah terbuka hampir sepertiganya badanku sedikit masuk dan aku nyalakan lampunya. Alhamduilah gak ada apa2 disitu. Aku matikan lagi lampunya dan aku tutup kembali pintunya. Akhirnya aku putuskan untuk kembali ke ruang tamu dan tidur.

Tapi saat aku berbalik untuk ke ruang tamu tiba2 sekilas aku melihat sosok tinggi besar berwarna hitam di kamar atas dapur. Aku berhenti dan mendongok keatas untuk memastikan sosok tadi. Ternyata masih ada. Dengan berdebar2 aku ambil ponselku di saku dan aku coba memotretnya. Setelah aku memotretnya sosok itu langsung hilang. Tapi aku berhasil mendapatkan gambar sosok itu.




Wednesday, June 4, 2014

MOTOR DC (Direct Current)



Motor DC/arus searah, sebagaimana namanya, menggunakan arus langsung yang tidak langsung/direct-unidirectional. Motor DC digunakan pada penggunaan khusus dimana diperlukan penyalaan torsi yang tinggi atau percepatan yang tetap untuk kisaran kecepatan yang luas. 

motor DC memiliki tiga komponen utama:
• Kutub medan. Secara sederhada digambarkan bahwa interaksi dua kutub magnet akan menyebabkan perputaran pada motor DC. Motor DC memiliki kutub medan yang stasioner dan dinamo yang menggerakan bearing pada ruang diantara kutub medan. Motor DC sederhana memiliki dua kutub medan: kutub utara dan kutub selatan. Garis magnetik energi membesar melintasi bukaan diantara kutub-kutub dari utara ke selatan. Untuk motor yang lebih besar atau lebih komplek terdapat satu atau lebih elektromagnet. Elektromagnet menerima listrik dari sumber daya dari luar sebagai penyedia struktur medan. 
• Dinamo. Bila arus masuk menuju dinamo, maka arus ini akan menjadi elektromagnet. Dinamo yang berbentuk silinder, dihubungkan ke as penggerak untuk menggerakan beban. Untuk kasus motor DC yang kecil, dinamo berputar dalam medan magnet yang dibentuk oleh kutub-kutub, sampai kutub utara dan selatan magnet berganti lokasi. Jika hal ini terjadi, arusnya berbalik untuk merubah kutub-kutub utara dan selatan dinamo. 
• Kommutator. Komponen ini terutama ditemukan dalam motor DC. Kegunaannya adalah untuk membalikan arah arus listrik dalam dinamo. Kommutator juga membantu dalam transmisi arus antara dinamo dan sumber daya. 

Gambar 3. Motor DC.

Keuntungan utama motor DC adalah kecepatannya mudah dikendalikan dan tidak mempengaruhi kualitas pasokan daya. Motor DC ini dapat dikendalikan dengan mengatur: 
• Tegangan dinamo – meningkatkan tegangan dinamo akan meningkatkan kecepatan.
• Arus medan – menurunkan arus medan akan meningkatkan kecepatan. 

Motor DC tersedia dalam banyak ukuran, namun penggunaannya pada umumnya dibatasi untuk beberapa penggunaan berkecepatan rendah, penggunaan daya rendah hingga sedang, seperti peralatan mesin dan rolling mills, sebab sering terjadi masalah dengan perubahan arah arus listrik mekanis pada ukuran yang lebih besar. Juga, motor tersebut dibatasi hanya untuk penggunaan di area yang bersih dan tidak berbahaya sebab resiko percikan api pada sikatnya. Motor DC juga relatif mahal dibanding motor AC. 

Hubungan antara kecepatan, flux medan dan tegangan dinamo ditunjukkan dalam persamaan berikut: 

Gaya elektromagnetik: E = KΦN 

Torsi: T = KΦIa

Dimana: 
E =gaya elektromagnetik yang dikembangkan pada terminal dinamo (volt) 
Φ = flux medan yang berbanding lurus dengan arus medan 
N = kecepatan dalam RPM (putaran per menit) 
T = torsi electromagnetik 
Ia = arus dinamo 
K = konstanta persamaan 

Jenis-Jenis Motor DC/Arus Searah

a. Motor DC sumber daya terpisah/ Separately Excited, Jika arus medan dipasok dari sumber terpisah maka disebut motor DC sumber daya terpisah/separately excited. 

b. Motor DC sumber daya sendiri/ Self Excited: motor shunt. Pada motor shunt, gulungan medan (medan shunt) disambungkan secara paralel dengan gulungan dinamo (A) seperti diperlihatkan dalam gambar 4. Oleh karena itu total arus dalam jalur merupakan penjumlahan arus medan dan arus dinamo. 
Gambar 4. Karakteristik Motor DC Shunt.

Berikut tentang kecepatan motor shunt (E.T.E., 1997): 
• Kecepatan pada prakteknya konstan tidak tergantung pada beban (hingga torsi tertentu setelah kecepatannya berkurang, lihat Gambar 4) dan oleh karena itu cocok untuk penggunaan komersial dengan beban awal yang rendah, seperti peralatan mesin. 
• Kecepatan dapat dikendalikan dengan cara memasang tahanan dalam susunan seri dengan dinamo (kecepatan berkurang) atau dengan memasang tahanan pada arus medan (kecepatan bertambah). 

c. Motor DC daya sendiri: motor seri. Dalam motor seri, gulungan medan (medan shunt) dihubungkan secara seri dengan gulungan dinamo (A) seperti ditunjukkan dalam gambar 5. Oleh karena itu, arus medan sama dengan arus dinamo.

Berikut tentang kecepatan motor seri (Rodwell International Corporation, 1997; L.M. Photonics Ltd, 2002): 
• Kecepatan dibatasi pada 5000 RPM.
• Harus dihindarkan menjalankan motor seri tanpa ada beban sebab motor akan mempercepat tanpa terkendali. 
Motor-motor seri cocok untuk penggunaan yang memerlukan torque penyalaan awal yang tinggi, seperti derek dan alat pengangkat hoist (lihat Gambar 5). 
Gambar 5. Karakteristik Motor DC Seri.

d. Motor DC Kompon/Gabungan.
Motor Kompon DC merupakan gabungan motor seri dan shunt. Pada motor kompon, gulungan medan (medan shunt) dihubungkan secara paralel dan seri dengan gulungan dinamo (A) seperti yang ditunjukkan dalam gambar 6. Sehingga, motor kompon memiliki torque penyalaan awal yang bagus dan kecepatan yang stabil. Makin tinggi persentase penggabungan (yakni persentase gulungan medan yang dihubungkan secara seri), makin tinggi pula torque penyalaan awal yang dapat ditangani oleh motor ini. Contoh, penggabungan 40-50% menjadikan motor ini cocok untuk alat pengangkat hoist dan derek, sedangkan motor kompon yang standar (12%) tidak cocok (myElectrical, 2005).
Gambar 6. Karakteristik Motor DC Kompon.


Sunday, June 1, 2014

GENERATOR DC (Direct Current)


Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu:

1. Generator penguat terpisah
2. Generator shunt
3. Generator kompon

1. Konstruksi Generator DC

Pada umumnya generator DC dibuat dengan menggunakan magnet permanent dengan 4-kutub rotor, regulator tegangan digital, proteksi terhadap beban lebih, starter eksitasi, penyearah, bearing dan rumah generator atau casis, serta bagian rotor. Gambar 1 menunjukkan gambar potongan melintang konstruksi generator DC.

 
Gambar 1. Konstruksi Generator DC

Generator DC terdiri dua bagian, yaitu stator, yaitu bagian mesin DC yang diam, dan bagian rotor, yaitu bagian mesin DC yang berputar. Bagian stator terdiri dari: rangka motor, belitan stator, sikat arang, bearing dan terminal box. Sedangkan bagian rotor terdiri dari: komutator, belitan rotor, kipas rotor dan poros rotor. 

Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang.

2. Prinsip kerja Generator DC

Pembangkitan tegangan induksi oleh sebuah generator diperoleh melalui dua cara:

• dengan menggunakan cincin-seret, menghasilkan tegangan induksi bolak-balik.
• dengan menggunakan komutator, menghasilkan tegangan DC.

Proses pembangkitan tegangan tegangan induksi tersebut dapat dilihat pada Gambar 2 dan Gambar 3.

Gambar 2. Pembangkitan Tegangan Induksi.

Jika rotor diputar dalam pengaruh medan magnet, maka akan terjadi perpotongan medan magnet oleh lilitan kawat pada rotor. Hal ini akan menimbulkan tegangan induksi. Tegangan induksi terbesar terjadi saat rotor menempati posisi seperti Gambar 2 (a) dan (c). Pada posisi ini terjadi perpotongan medan magnet secara maksimum oleh penghantar. Sedangkan posisi jangkar pada Gambar 2.(b), akan menghasilkan tegangan induksi nol. Hal ini karena tidak adanya perpotongan medan magnet dengan penghantar pada jangkar atau rotor. Daerah medan ini disebut daerah netral.

 
Gambar 3. Tegangan Rotor yang dihasilkan melalui cincin-seret dan komutator.

Jika ujung belitan rotor dihubungkan dengan slip-ring berupa dua cincin (disebut juga dengan cincin seret), seperti ditunjukkan Gambar 3.(1), maka dihasilkan listrik AC (arus bolak-balik) berbentuk sinusoidal. Bila ujung belitan rotor dihubungkan dengan komutator satu cincin Gambar 3.(2) dengan dua belahan, maka dihasilkan listrik DC dengan dua gelombang positip.

• Rotor dari generator DC akan menghasilkan tegangan induksi bolak-balik. Sebuah komutator berfungsi sebagai penyearah tegangan AC.

• Besarnya tegangan yang dihasilkan oleh sebuah generator DC, sebanding dengan banyaknya putaran dan besarnya arus eksitasi (arus penguat medan).

3. Jangkar Generator DC

Jangkar adalah tempat lilitan pada rotor yang berbentuk silinder beralur. Belitan tersebut merupakan tempat terbentuknya tegangan induksi. Pada umumnya jangkar terbuat dari bahan yang kuat mempunyai sifat feromagnetik dengan permiabilitas yang cukup besar.
Permiabilitas yang besar diperlukan agar lilitan jangkar terletak pada derah yang induksi magnetnya besar, sehingga tegangan induksi yang ditimbulkan juga besar. Belitan jangkar terdiri dari beberapa kumparan yang dipasang di dalam alur jangkar. Tiap-tiap kumparan terdiri dari lilitan kawat atau lilitan batang.

Gambar 4. Jangkar Generator DC.

4. Reaksi Jangkar

Fluks magnet yang ditimbulkan oleh kutub-kutub utama dari sebuah generator saat tanpa beban disebut Fluks Medan Utama (Gambar 5). Fluks ini memotong lilitan jangkar sehingga timbul tegangan induksi. 

Gambar 5. Medan Eksitasi Generator DC

Bila generator dibebani maka pada penghantar jangkar timbul arus jangkar. Arus jangkar ini menyebabkan timbulnya fluks pada penghantar jangkar tersebut dan biasa disebut FIuks Medan Jangkar (Gambar 6). 

Gambar 6. Medan Jangkar dari Generator DC (a) dan Reaksi Jangkar (b).

Munculnya medan jangkar akan memperlemah medan utama yang terletak disebelah kiri kutub utara, dan akan memperkuat medan utama yang terletak di sebelah kanan kutub utara. Pengaruh adanya interaksi antara medan utama dan medan jangkar ini disebut reaksi jangkar. Reaksi jangkar ini mengakibatkan medan utama tidak tegak lurus pada garis netral n, tetapi bergeser sebesar sudut α. Dengan kata lain, garis netral akan bergeser. Pergeseran garis netral akan melemahkan tegangan nominal generator. 
Untuk mengembalikan garis netral ke posisi awal, dipasangkan medan magnet bantu (interpole atau kutub bantu), seperti ditunjukkan pada Gambar 7.(a). 

Gambar 7. Generator dengan Kutub Bantu (a) dan Generator Kutub Utama, Kutub Bantu, Belitan Kompensasi (b).

Lilitan magnet bantu berupa kutub magnet yang ukuran fisiknya lebih kecil dari kutub utama. Dengan bergesernya garis netral, maka sikat yang diletakkan pada permukaan komutator dan tepat terletak pada garis netral n juga akan bergeser. Jika sikat dipertahankan pada posisi semula (garis netral), maka akan timbul percikan bunga api, dan ini sangat berpotensi menimbulkan kebakaran atau bahaya lainnya. Oleh karena itu, sikat juga harus digeser sesuai dengan pergeseran garis netral. Bila sikat tidak digeser maka komutasi akan jelek, sebab sikat terhubung dengan penghantar yang mengandung tegangan. Reaksi jangkar ini dapat juga diatasi dengan kompensasi yang dipasangkan pada kaki kutub utama baik pada lilitan kutub utara maupun kutub selatan, seperti ditunjukkan pada gambar 7 (a) dan (b), generator dengan komutator dan lilitan kompensasinya.

Kini dalam rangkaian generator DC memiliki tiga lilitan magnet, yaitu: 
• lilitan magnet utama
• lilitan magnet bantu (interpole)
• lilitan magnet kompensasi

5. Jenis-Jenis Generator DC

Seperti telah disebutkan diawal, bahwa generator DC berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker) dibagi menjadi 3 jenis, yaitu:
1. Generator penguat terpisah
2. Generator shunt
3. Generator kompon

• Generator Penguat Terpisah

Pada generator penguat terpisah, belitan eksitasi (penguat eksitasi) tidak terhubung menjadi satu dengan rotor. Terdapat dua jenis generator penguat terpisah, yaitu:
1. Penguat elektromagnetik (Gambar 8.a)
2. Magnet permanent / magnet tetap (Gambar 8.b)

 
Gambar 8. Generator Penguat Terpisah.

Energi listrik yang dihasilkan oleh penguat elektromagnet dapat diatur melalui pengaturan tegangan eksitasi. Pengaturan dapat dilakukan secara elektronik atau magnetik. Generator ini bekerja dengan catu daya DC dari luar yang dimasukkan melalui belitan F1-F2.

Penguat dengan magnet permanen menghasilkan tegangan output generator yang konstan dari terminal rotor A1-A2. Karakteristik tegangan V relatif konstan dan tegangan akan menurun sedikit ketika arus beban I dinaikkan mendekati harga nominalnya.

Karakteristik Generator Penguat Terpisah

Gambar 9. Karakteristik Generator Penguat Terpisah

Gambar 9 menunjukkan:
a. karakteristik generator penguat terpisah saat eksitasi penuh (Ie 100%) dan saat eksitasi setengah penuh (Ie 50%). Ie adalah arus eksitasi, I adalah arus beban.Tegangan output generator akan sedikit turun jika arus beban semakin besar. 
b. Kerugian tegangan akibat reaksi jangkar.
c. Perurunan tegangan akibat resistansi jangkar dan reaksi jangkar, selanjutnya mengakibatkan turunnya pasokan arus penguat ke medan magnet, sehingga tegangan induksi menjadi kecil.

• Generator Shunt

Pada generator shunt, penguat eksitasi E1-E2 terhubung paralel dengan rotor (A1-A2). Tegangan awal generator diperoleh dari magnet sisa yang terdapat pada medan magnet
stator. Rotor berputar dalam medan magnet yang lemah, dihasilkan tegangan yang akan memperkuat medan magnet stator, sampai dicapai tegangan nominalnya. Pengaturan arus eksitasi yang melewati belitan shunt E1-E2 diatur oleh tahanan geser. Makin besar arus eksitasi shunt, makin besar medan penguat shunt yang dihasilkan, dan tegangan terminal meningkat sampai mencapai tegangan nominalnya. Diagram rangkaian generator shunt dapat dilihat pada Gambar 10.

Gambar 10. Diagram Rangkaian Generator Shunt

Jika generator shunt tidak mendapatkan arus eksitasi, maka sisa megnetisasi tidak akan ada, atau jika belitan eksitasi salah sambung atau jika arah putaran terbalik, atau rotor terhubung-singkat, maka tidak akan ada tegangan atau energi listrik yang dihasilkan oleh generator tersebut.

Karakteristik Generator Shunt

 
Gambar 11. Karakteristik Generator Shunt.

Generator shunt mempunyai karakteristik seperti ditunjukkan pada Gambar 11. Tegangan output akan turun lebih banyak untuk kenaikan arus beban yang sama, dibandingkan dengan tegangan output pada generator penguat terpisah.

Sebagai sumber tegangan, karakteristik dari generator penguat terpisah dan generator shunt tentu kurang baik, karena seharusnya sebuah generator mempunyai tegangan output yang konstan, namun hal ini dapat diperbaiki pada generator kompon.

• Generator Kompon

Generator kompon mempunyai dua penguat eksitasi pada inti kutub utama yang sama. Satu penguat eksitasi merupakan penguat shunt, dan lainnya merupakan penguat seri. Diagram rangkaian generator kompon ditunjukkan pada Gambar 12. Pengatur medan magnet (D1-D2) terletak di depan belitan shunt.

Gambar 12. Diagram Rangkaian Generator Kompon

Karakteristik Generator Kompon

 
Gambar 13. Karakteristik Generator Kompon

Gambar 13 menunjukkan karakteristik generator kompon. Tegangan output generator terlihat konstan dengan pertambahan arus beban, baik pada arus eksitasi penuh maupun eksitasi 50%. Hal ini disebabkan oleh adanya penguatan lilitan seri, yang cenderung naik tegangannya jika arus beban bertambah besar. Jadi ini merupakan kompensasi dari generator shunt, yang cenderung tegangannya akan turun jika arus bebannya naik.

Monday, May 12, 2014

MOTOR AC (Alternating Current)


Motor AC/arus bolak-balik menggunakan arus listrik yang membalikkan arahnya secara teratur pada rentang waktu tertentu. Motor listrik AC memiliki dua buah bagian dasar listrik: "stator" dan "rotor" seperti ditunjukkan dalam Gambar 7. 

Stator merupakan komponen listrik statis. Rotor merupakan komponen listrik berputar untuk memutar as motor. Keuntungan utama motor DC terhadap motor AC adalah bahwa kecepatan motor AC lebih sulit dikendalikan. Untuk mengatasi kerugian ini, motor AC dapat dilengkapi dengan penggerak frekwensi variabel untuk meningkatkan kendali kecepatan sekaligus menurunkan dayanya. Motor induksi merupakan motor yang paling populer di industri karena kehandalannya dan lebih mudah perawatannya. Motor induksi AC cukup murah (harganya setengah atau kurang dari harga sebuah motor DC) dan juga memberikan rasio daya terhadap berat yang cukup tinggi (sekitar dua kali motor DC).
Berdasarkan karakteristik dari arus listrik yang mengalir, motor AC (Alternating Current, Arus Bolak-balik) terdiri dari 2 jenis, yaitu:

1. Motor listrik AC / arus bolak-balik 1 fasa
2. Motor listrik AC / arus bolak-balik 3 fasa



Pembahasan dalam artikel kali ini di titik beratkan pada motor listrik AC 1 fasa, yang terdiri dari:
• Motor Kapasitor
• Motor Shaded Pole
• Motor Universal



Sebelumnya akan lebih baik jika anda membaca artikel mengenai motor listrik di sini


Prinsip kerja Motor AC Satu Fasa

Motor AC satu fasa berbeda cara kerjanya dengan motor AC tiga fasa, dimana pada motor AC tiga fasa untuk belitan statornya terdapat tiga belitan yang menghasilkan medan putar dan pada rotor sangkar terjadi induksi dan interaksi torsi yang menghasilkan putaran. Sedangkan pada motor satu fasa memiliki dua belitan stator, yaitu belitan fasa utama (belitan U1-U2) dan belitan fasa bantu (belitan Z1-Z2), lihat gambar1.

 
Gambar 1. Prinsip Medan Magnet Utama dan Medan magnet Bantu Motor Satu fasa

Belitan utama menggunakan penampang kawat tembaga lebih besar sehingga memiliki impedansi lebih kecil. Sedangkan belitan bantu dibuat dari tembaga berpenampang kecil dan jumlah belitannya lebih banyak, sehingga impedansinya lebih besar dibanding impedansi belitan utama. 

Grafik arus belitan bantu Ibantu dan arus belitan utama Iutama berbeda fasa sebesar φ, hal ini disebabkan karena perbedaan besarnya impedansi kedua belitan tersebut. Perbedaan arus beda fasa ini menyebabkan arus total, merupakan penjumlahan vektor arus utama dan arus bantu. Medan magnet utama yang dihasilkan belitan utama juga berbeda fasa sebesar φ dengan medan magnet bantu. 

 
Gambar 2. grafik Gelombang arus medan bantu dan arus medan utama

 
Gambar 3. Medan magnet pada Stator Motor satu fasa


Belitan bantu Z1-Z2 pertama dialiri arus Ibantu menghasilkan fluks magnet Φ tegak lurus, beberapa saat kemudian belitan utama U1-U2 dialiri arus utama Iutama. yang bernilai positip. Hasilnya adalah medan magnet yang bergeser sebesar 45° dengan arah berlawanan jarum jam. Kejadian ini berlangsung terus sampai satu siklus sinusoida, sehingga menghasilkan medan magnet yang berputar pada belitan statornya.

Rotor motor satu fasa sama dengan rotor motor tiga fasa yaitu berbentuk batang-batang kawat yang ujung-ujungnya dihubung singkatkan dan menyerupai bentuk sangkar tupai, maka sering disebut rotor sangkar. 

 
Gambar 4. Rotor sangkar

Belitan rotor yang dipotong oleh medan putar stator, menghasilkan tegangan induksi, interaksi antara medan putar stator dan medan magnet rotor akan menghasilkan torsi putar pada rotor.

Motor Kapasitor

Motor kapasitor satu phasa banyak digunakan dalam peralatan rumah tangga seperti motor pompa air, motor mesin cuci, motor lemari es, motor air conditioning. Konstruksinya sederhana dengan daya kecil dan bekerja dengan tegangan suplai PLN 220 V, oleh karena itu menjadikan motor kapasitor ini banyak dipakai pada peralatan rumah tangga.

 
Gambar 5. Motor kapasitor

Belitan stator terdiri atas belitan utama dengan notasi terminal U1-U2, dan belitan bantu dengan notasi terminal Z1-Z2 Jala-jala L1 terhubung dengan terminal U1, dan kawat netral N terhubung dengan terminal U2. Kondensator kerja berfungsi agar perbedaan sudut phasa belitan utama dengan belitan bantu mendekati 90°. 
Pengaturan arah putaran motor kapasitor dapat dilakukan dengan (lihat gambar6):
• Untuk menghasilkan putaran ke kiri (berlawanan jarum jam) kondensator kerja CB disambungkan ke terminal U1 dan Z2 dan terminal Z1 dikopel dengan terminal. 
• Putaran ke kanan (searah jarum jam) kondensator kerja disambung kan ke terminal Z1 dan U1 dan terminal Z2 dikopel dengan terminal U1. 

 
Gambar 6. Pengawatan motor kapasitor dengan pembalik putaran.

Motor kapasitor dengan daya diatas 1 KW di lengkapi dengan dua buah kondensator dan satu buah saklar sentrifugal. Belitan utama U1-U2 dihubungkan dengan jala-jala L1 dan Netral N. Belitan bantu Z1-Z2 disambungkan seri dengan kondensator kerja CB, dan sebuah kondensator starting CA diseri dengan kontak normally close (NC) dari saklar sentrifugal, lihat gambar 7.

Awalnya belitan utama dan belitan bantu mendapatkan tegangan dari jala-jala L1 dan Netral. Kemudian dua buah kondensator CB dan CA, keduanya membentuk loop tertutup sehingga rotor mulai berputar, dan ketika putaran mendekati 70% putaran nominalnya, saklar sentrifugal akan membuka dan kontak normally close memutuskan kondensator bantu CA.

 
Gambar 7. Pengawatan dengan Dua Kapasitor

Fungsi dari dua kondensator yang disambungkan parallel, CA+CB, adalah untuk meningkatkan nilai torsi awal untuk mengangkat beban. Setelah putaran motor mencapai 70% putaran, saklar sentrifugal terputus sehingga hanya kondensator kerja CB saja yang tetap bekerja. Jika kedua kondensator rusak maka torsi motor akan menurun drastis, lihat gambar 8.

 
Gambar 8. Karakteristik Torsi Motor kapasitor

MotorShaded Pole

Motor shaded pole atau motor phasa terbelah termasuk motor satu phasa daya kecil, dan banyak digunakan untuk peralatan rumah tangga sebagai motor penggerak kipas angin, blender. Konstruksinya sangat sederhana, pada kedua ujung stator ada dua kawat yang terpasang dan dihubung singkatkan fungsinya sebagai pembelah phasa. 

Belitan stator dibelitkan sekeliling inti membentuk seperti belitan transfor mator. Rotornya berbentuk sangkar tupai dan porosnya ditempatkan pada rumah stator ditopang dua buah bearing.

 
Gambar 9. motor shaded pole, Motor fasa terbelah.

Irisan penampang motor shaded pole memperlihatkan dua bagian, yaitu bagian stator dengan belitan stator dan dua kawat shaded pole. Bagian rotor sangkar ditempatkan di tengah-tengah stator, lihat gambar 10.

Gambar 10. Penampang motor shaded pole.

Torsi putar dihasilkan oleh adanya pembelahan phasa oleh kawat shaded pole. Konstruksi yang sederhana, daya yang kecil, handal, mudah dioperasikan, bebas perawatan dan cukup di suplai dengan Tegangan AC 220 V, jenis motor shaded pole banyak digunakan untuk peralatan rumah tangga kecil.

Motor Universal

Motor Universal termasuk motor satu phasa dengan menggunakan belitan stator dan belitan rotor. Motor universal dipakai pada mesin jahit, motor bor tangan. Perawatan rutin dilakukan dengan mengganti sikat arang yang memendek atau pegas sikat arang yang lembek. Kontruksinya yang sederhana, handal, mudah dioperasikan, daya yang kecil, torsinya yang cukup besar motor universal dipakai untuk peralatan rumah tangga. 

 
Gambar 11. komutator pada motor universal.

Bentuk stator dari motor universal terdiri dari dua kutub stator. Belitan rotor memiliki dua belas alur belitan dan dilengkapi komutator dan sikat arang yang menghubungkan secara seri antara belitan stator dengan belitan rotornya. Motor universal memiliki kecepatan tinggi sekitar 3000 rpm. 

 
Gambar 12. stator dan rotor motor universal

Aplikasi motor universal untuk mesin jahit, untuk mengatur kecepatan dihubungkan dengan tahanan geser dalam bentuk pedal yang ditekan dan dilepaskan.

Jenis-Jenis Motor AC/Arus Bolak-Balik ditinjau dari putaran rotor terhadap putaran fluksi stator.

a. Motor sinkron. Motor sinkron adalah motor AC yang bekerja pada kecepatan tetap pada sistim frekwensi tertentu. Motor ini memerlukan arus searah (DC) untuk pembangkitan daya dan memiliki torque awal yang rendah, dan oleh karena itu motor sinkron cocok untuk penggunaan awal dengan beban rendah, seperti kompresor udara, perubahan frekwensi dan generator motor. Motor sinkron mampu untuk memperbaiki faktor daya sistim, sehingga sering digunakan pada sistim yang menggunakan banyak listrik. 

Komponen utama motor sinkron adalah (Gambar 7):
• Rotor. Perbedaan utama antara motor sinkron dengan motor induksi adalah bahwa rotor mesin sinkron berjalan pada kecepatan yang sama dengan perputaran medan magnet. Hal ini memungkinkan sebab medan magnit rotor tidak lagi terinduksi. Rotor memiliki magnet permanen atau arus DC-excited, yang dipaksa untuk mengunci pada posisi tertentu bila dihadapkan dengan medan magnet lainnya. 
• Stator. Stator menghasilkan medan magnet berputar yang sebanding dengan frekwensi yang dipasok. 

Motor ini berputar pada kecepatan sinkron, yang diberikan oleh persamaan berikut (Parekh, 2003): 

Ns = 120 f / P 

Dimana: 
f = frekwensi dari pasokan frekwensi 
P= jumlah kutub 

Gambar 7. Motor Sinkron.

b. Motor induksi. Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah dan mudah didapat, dan dapat langsung disambungkan ke sumber daya AC.

Komponen Motor induksi memiliki dua komponen listrik utama (Gambar 8):
• Rotor. Motor induksi menggunakan dua jenis rotor: 
Rotor kandang tupai terdiri dari batang penghantar tebal yang dilekatkan dalam petak-petak slots paralel. Batang-batang tersebut diberi hubungan pendek pada kedua ujungnya dengan alat cincin hubungan pendek. 
Lingkaran rotor yang memiliki gulungan tiga fase, lapisan ganda dan terdistribusi. Dibuat melingkar sebanyak kutub stator. Tiga fase digulungi kawat pada bagian dalamnya dan ujung yang lainnya dihubungkan ke cincin kecil yang dipasang pada batang as dengan sikat yang menempel padanya. 
• Stator. Stator dibuat dari sejumlah stampings dengan slots untuk membawa gulungan tiga fase. Gulungan ini dilingkarkan untuk sejumlah kutub yang tertentu. Gulungan diberi spasi geometri sebesar 120 derajat .

Klasifikasi motor induksi 

Motor induksi dapat diklasifikasikan menjadi dua kelompok utama (Parekh, 2003): 
• Motor induksi satu fase. Motor ini hanya memiliki satu gulungan stator, beroperasi dengan pasokan daya satu fase, memiliki sebuah rotor kandang tupai, dan memerlukan sebuah alat untuk menghidupkan motornya. Sejauh ini motor ini merupakan jenis motor yang paling umum digunakan dalam peralatan rumah tangga, seperti kipas angin, mesin cuci dan pengering pakaian, dan untuk penggunaan hingga 3 sampai 4 Hp. 
• Motor induksi tiga fase. Medan magnet yang berputar dihasilkan oleh pasokan tiga fase yang seimbang. Motor tersebut memiliki kemampuan daya yang tinggi, dapat memiliki kandang tupai atau gulungan rotor (walaupun 90% memiliki rotor kandang tupai); dan penyalaan sendiri. Diperkirakan bahwa sekitar 70% motor di industri menggunakan jenis ini, sebagai contoh, pompa, kompresor, belt conveyor, jaringan listrik , dan grinder. Tersedia dalam ukuran 1/3 hingga ratusan Hp. 

Gambar 8. Motor Induksi.

Kecepatan motor induksi 

Motor induksi bekerja sebagai berikut, Listrik dipasok ke stator yang akan menghasilkan medan magnetMedan magnet ini bergerak dengan kecepatan sinkron disekitar rotor. Arus rotor menghasilkan medan magnet kedua, yang berusaha untuk melawan medan magnet stator, yang menyebabkan rotor berputar. Walaupun begitu, didalam prakteknya motor tidak pernah bekerja pada kecepatan sinkron namun pada “kecepatan dasar” yang lebih rendah. Terjadinya perbedaan antara dua kecepatan tersebut disebabkan adanya “slip/geseran” yang meningkat dengan meningkatnya beban. Slip hanya terjadi pada motor induksi. Untuk menghindari slip dapat dipasang sebuah cincin geser/ slip ring, dan motor tersebut dinamakan “motor cincin geser/slip ring motor”. 

Persamaan berikut dapat digunakan untuk menghitung persentase slip/geseran(Parekh, 2003): 

% Slip = (Ns – Nb)/Ns x 100

Dimana: 
Ns = kecepatan sinkron dalam RPM 
Nb = kecepatan dasar dalam RPM

Hubungan antara beban, kecepatan dan torsi


Gambar 9. Grafik Torsi vs Kecepatan Motor Induksi.

Gambar 9 menunjukan grafik torsi vs kecepatan motor induksi AC tiga fase dengan arus yang sudah ditetapkan. Bila motor (Parekh, 2003): 
• Mulai menyala ternyata terdapat arus nyala awal yang tinggi dan torsi yang rendah (“pull-up torque”). 
• Mencapai 80% kecepatan penuh, torsi berada pada tingkat tertinggi (“pull-out torque”) dan arus mulai turun. 
• Pada kecepatan penuh, atau kecepatan sinkron, arus torsi dan stator turun ke nol.